DFB laser diodes from Nanoplus enable gas sensing

Nanoplus singlemode distributed-feedback (DFB) laser diodes

Singlemode distributed-feedback (DFB) laser diodes in the 2.9–3.5 μm wavelength range enable gas sensing using tunable diode laser spectroscopy (TDLS), which detects gas species at trace levels in the parts-per-million (ppm) range. The laser diodes can detect different hydrocarbons, such as CH4, C2H2, C2H6, and C3H8, with increased sensitivity.
Gerbrunn, Germany


More Products



“A new class of laser sources with performance formerly unattainable has been developed in the wavelength range between 2.9 - 3.5 µm and is now made commercially available for TDLS applications.

Our innovative DFB laser sources will now enable a new qualitative level of monitoring techniques using TDLS. By using the fundamental transitions instead of presently used overtones, different hydrocarbons (like CH4, C2H2, C2H6, C3H8 and others) can be more easily distinguished and the sensitivity can be increased by several orders of magnitude. Some of these gases were not detectable by TDLS at all before. This also opens up entirely new fields of applications. If you want to learn more, please see: www.nanoplus.com/3500nm.”


Follow us on Twitter

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to Laser Focus World magazine; it's free!

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles


In-Situ Infrared Sensing using Calibration-Free Scanned-WMS Laser Absorption Spectroscopy

This presentation, sponsored by Wavelength Electronics and ILX Lightwave, will discuss the range of sensing capabilities offered by scanned-WMS in the near- ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Introduction to scientific InGaAs FPA cameras

Working in the near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum offers r...

Understanding Optical Filters

Optical Filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...
Technical Digests

Fiber for Fiber Lasers

The development of higher-power and higher-energy fiber lasers has benefited from many advances i...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS