DFB laser diodes from Nanoplus enable gas sensing

Nanoplus singlemode distributed-feedback (DFB) laser diodes

Singlemode distributed-feedback (DFB) laser diodes in the 2.9–3.5 μm wavelength range enable gas sensing using tunable diode laser spectroscopy (TDLS), which detects gas species at trace levels in the parts-per-million (ppm) range. The laser diodes can detect different hydrocarbons, such as CH4, C2H2, C2H6, and C3H8, with increased sensitivity.
Nanoplus
Gerbrunn, Germany

info@nanoplus.com

More Products

-----

PRESS RELEASE

“A new class of laser sources with performance formerly unattainable has been developed in the wavelength range between 2.9 - 3.5 µm and is now made commercially available for TDLS applications.

Our innovative DFB laser sources will now enable a new qualitative level of monitoring techniques using TDLS. By using the fundamental transitions instead of presently used overtones, different hydrocarbons (like CH4, C2H2, C2H6, C3H8 and others) can be more easily distinguished and the sensitivity can be increased by several orders of magnitude. Some of these gases were not detectable by TDLS at all before. This also opens up entirely new fields of applications. If you want to learn more, please see: www.nanoplus.com/3500nm.”

-----

Follow us on Twitter

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to Laser Focus World magazine; it's free!



Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS