DFB laser diodes from Nanoplus enable gas sensing

Nanoplus singlemode distributed-feedback (DFB) laser diodes

Singlemode distributed-feedback (DFB) laser diodes in the 2.9–3.5 μm wavelength range enable gas sensing using tunable diode laser spectroscopy (TDLS), which detects gas species at trace levels in the parts-per-million (ppm) range. The laser diodes can detect different hydrocarbons, such as CH4, C2H2, C2H6, and C3H8, with increased sensitivity.
Gerbrunn, Germany


More Products



“A new class of laser sources with performance formerly unattainable has been developed in the wavelength range between 2.9 - 3.5 µm and is now made commercially available for TDLS applications.

Our innovative DFB laser sources will now enable a new qualitative level of monitoring techniques using TDLS. By using the fundamental transitions instead of presently used overtones, different hydrocarbons (like CH4, C2H2, C2H6, C3H8 and others) can be more easily distinguished and the sensitivity can be increased by several orders of magnitude. Some of these gases were not detectable by TDLS at all before. This also opens up entirely new fields of applications. If you want to learn more, please see: www.nanoplus.com/3500nm.”


Follow us on Twitter

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to Laser Focus World magazine; it's free!

Most Popular Articles


Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.



Applications include LIDAR and LADAR, range finding and spectroscopy

VPFL- ISP- 30000

Applications include marking, material processing, micromachining
and spectroscopy


Marking material processing micromachining welding spectroscopy


Integrated Optics Inc

Manufactures micro lasers for spectroscopy, imaging, material processing and range find...


Manufactures automated scanning probe microscopes, integrated confocal Raman/AFM/SNOM (...

RGB Lasersysteme GmbH

Designs and manufactures highly integrated laser and spectroscopy systems for scientifi...

Social Activity

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS