Angle-resolved photoemission spectroscopy sees 2D electronic states

RIKEN_image
The electronic states at the surface of the topological insulator CuxBi2Se3, which can now be measured. The horizontal axis shows the electron energy in electron volts; the vertical axes depict the electron momentum in the 2D plane. (Copyright 2011, American Physical Society)


Harima, Japan--Physicists at the RIKEN Spring-8 Center, along with colleagues from the University of Tokyo and several other institutes in Japan, China, and the USA, can now visualize the electronic states at the surface of a crystal, or the 2D layers within a sample, using a variant of angle-resolved photoemission spectroscopy (ARPES). This should give them insight into high-temperature superconductors.

The technique enables in-depth study of these two-dimensional electronic states for the first time (see figure). Many of the materials of greatest interest for novel electronic applications are based on the intricate properties of such electronic states, explains team member Yukiaki Ishida.

In ARPES, laser light is shone on a crystal and the pattern of the photoelectrons ejected from the crystal’s surface is recorded. Beams of differing polarization allow further details of the electronic states of the crystal to be obtained. When studying ARPES measurements made on two different crystals--niobium-doped strontium titanate (SrTiO3:Nb) and copper-intercalated bismuth selenide (CuxBi2Se3)--Ishida and colleagues discovered that, under some experimental circumstances, there is a common pattern of electron photoemission. The catch is that this pattern occurs only when the 2D electronic states probed therein are thin enough.

This technique can provide unique insight into a number of widely studied materials. High-temperature superconductors are made of thin atomic layers that are crucial to their superconductivity. A recently discovered class of materials, topological insulators (such as CuxBi2Se3), also has promising properties: the electrons of these materials can travel at their surface almost without any losses to the orientation of the electron’s magnetic property, which has potential application in new ways of computing.

Beyond the study of novel electronic materials, studying the surfaces of materials may reveal new findings, says Ishida. “How surface states change during catalytic reactions is of major scientific and commercial interest,” he explains. “For example, by monitoring the surface states we may be able to investigate how deep a chemical reaction penetrates into the crystal.”

Source: http://www.researchsea.com/html/article.php/aid/6826/cid/2/research/imaging_electrons_by_the_slice.html



Most Popular Articles

Webcasts

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Introduction to scientific InGaAs FPA cameras

Working in the near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum offers r...

Understanding Optical Filters

Optical Filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...
Technical Digests

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

FREEFORM OPTICS: Top-notch capabilities lead to expanded possibilities

The use of free-form aspherical surfaces in an optical system can give it abilities impossible to...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS