Single-mode nanocavity LED sends data at just 0.25 fJ per data bit

stanford_LED
An integrated-optics chip (at center of chip package) contains hundreds of Stanford single-mode quantum-dot LEDs. (Image: Jan Petykiewicz, School of Engineering)



Palo Alto, CA--A photonic-crystal nanocavity LED demonstrated by a group at Stanford University has a 10 GHz modulation speed and sends data at less than 1 fJ per data bit.1 The quantum-dot (QD)-based device operates at room temperature, is single-mode, and is easily integrated into on-chip photonic circuits for data communications.

"Traditionally, engineers have thought only lasers can communicate at high data rates and ultralow power," said Gary Shambat, a doctoral candidate in electrical engineering. "Our nanophotonic, single-mode LED can perform all the same tasks as lasers, but at much lower power."

Stanford's Jelena Vuckovic, an associate professor of electrical engineering, had earlier this year produced a nanoscale laser that was similarly efficient and fast, but it operated only at temperatures below 150 K, making it impractical for commercial use.

The new LED has indium arsenide QDs that are electrically pumped. The QDs are contained in a photonic crystal that serves as a resonator, forcing single-mode behavior.

Conventional low-power laser devices require about 500 fJ of energy per bit; the new LED device requires, on average, 0.25 fJ per bit. "Our device is some 2000 times more energy efficient than best devices in use today," said Vuckovic.

Source: http://news.stanford.edu/news/2011/november/data-transmission-breakthrough-111511.html


REFERENCE:

1. Gary Shambat et al., Nature Communications 2, article number 539; doi:10.1038/ncomms1543; published 15 November 2011.

Most Popular Articles

Webcasts

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

X-PD

Fiber optics Partial discharge sensors and system

O-LASE

OEM high power fiber laser module up to 1.5 kW

X-LASE 24-6

Picosecond pulsed fiber laser, Average power: 24W

RELATED COMPANIES

QPS Photronics Inc

Provides Fabry-Perot FBG interference cavity and related components, Laser cavity FBG P...

Ancal Inc

Supplies miniature fiber optic spectrometers, spectroradiometers, fiber optic light sou...

Barcor Inc

Manufactures stock and custom fiber optic illumination systems including fiber optic li...

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS