PC fiber filled with nanomagnetic fluid becomes a magnetic-field sensor

A photonic-crystal (PC) fiber-based magnetic-field sensor created by scientists at the Defence Institute of Advanced Technology and Fergusson College (both in Pune, India) combines the flexibility of optical fiber with the sensing capabilities of optofluidics. The nanomagnetic fluid is prepared by combining an iron-salt solution with distilled water and ammonia, resulting in 20-nm-diameter suspended iron oxide particles. A polarization-maintaining PC fiber with two enlarged air holes is filled with the nanomagnetic fluid via syringe. The 23.5 cm fiber section is terminated on both ends with fiber polarizers (forming a birefringent interferometer), the input polarizer rotated to 45º, and a laser-swept interrogator with a broadband 1510–1590 nm source measures the interference between the two polarization modes at the output end.

The filling process fills only the two larger holes in the PC fiber, resulting in a reduced form birefringence intrinsic to the PC fiber, and the introduction of a magnetic-field-dependent birefringence. The wavelength spacing of the interference fringes after fiber filling is 37.979 nm. Upon application of a DC magnetic field, the fringe pattern shifts toward the blue. A magnetic-field sensitivity of 242 pm/mT was measured in one of the prototype devices. Contact Harneet Thakur at gahir08@gmail.com.

PC fiber filled with nanomagnetic fluid becomes a magnetic-field sensor

Most Popular Articles


Handheld Spectrometers

Spectroscopy can be a powerful measurement tool, and handheld spectrometers offer the ultimate in portability, so the instrument can be applied wherever meas...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...
Technical Digests

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...
Sponsored by

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.



Fiber optics Partial discharge sensors and system


OEM high power fiber laser module up to 1.5 kW

ARCMaster® FSM-100M and FSM-100P Fusion Splicers

The FSM-100M+ and FSM-100P+ specialty fusion splicers provide advanced capabilitiessuit...


QPS Photronics Inc

Provides Fabry-Perot FBG interference cavity and related components, Laser cavity FBG P...

Ancal Inc

Supplies miniature fiber optic spectrometers, spectroradiometers, fiber optic light sou...

Barcor Inc

Manufactures stock and custom fiber optic illumination systems including fiber optic li...
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS