Omega Laser measures fundamental nuclear-collision properties, does it better than particle accelerators

omega-target-chamber
View inside the Omega Laser's target chamber (Image: Laboratory for Laser Energetics)



Rochester, NY--Researchers at the Massachusetts Institute of Technology (MIT; Cambridge, MA), Lawrence Livermore National Laboratory (LLNL; Livermore, CA), and the University of Rochester (U of R) have used the U of R's Omega Laser Facility at the Laboratory for Laser Energetics to do a fundamental nuclear-physics experiment -- the first time such a feat has been achieved using a high-energy-density laser facility. Normally, such a thing is done using a particle accelerator.1


The scientists made precise measurements of the elastic scattering of neutrons off deuterium (D) and tritium (T) ions. They did this by using the Omega Laser to create a hot, dense plasma: the laser's 60 beams caused a 1 mm glass capsule filled with D and T to implode. A small fraction of the D and T ions fused, creating 14.1 MeV neutrons. Some of the neutrons scattered from the surrounding D and T ions, allowing a highly accurate measurement of the nuclear-collision process to be made.

Accelerator-based measurements were also used, although just to normalize the absolute cross-section. Once normalized, the shape of the low-energy cross-section was obtained with more accuracy than possible with accelerators. The results are important for nuclear astrophysics and fusion-energy research.

Next could be the fusion of 3He and 3He ions, important because it is the dominant energy-producing step by which the sun and normal-sequence stars generate their energy.

REFERENCE:

1. J. A. Frenje et al., Phys. Rev. Lett. 107, 122502 (2011).


Most Popular Articles

Webcasts

Handheld Spectrometers

Spectroscopy can be a powerful measurement tool, and handheld spectrometers offer the ultimate in portability, so the instrument can be applied wherever meas...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...
Technical Digests

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

P-series 1470nm to 1550 nm

Ultra-High Brightness Direct Diode Lasers 20W to 135W

T-Series 915nm, 940nm, or 976nm

Ultra-High Brightness Direct Diode Lasers 85W to 575W

PCB Laser Marking System

PCB Laser Marking Systems

RELATED COMPANIES

Lighthouse Photonics Inc

Provides sealed, turn-key, cost-effective, diode-pumped solid-state (DPSS) lasers for s...

Fibertek Inc

Specializes in the design, development, manufacture, and testing of advanced diode-pump...

Control Micro Systems Inc

Offers laser marking, laser cutting, laser drilling and laser welding systems for a wid...
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS