Low-cost ‘smart window’ coating switches quickly from clear to opaque

Sept. 21, 2011
Gyeonggi-do, Korea--A new type of smart window based on so-called “counterions” switches from 0% to 90.9% optical transmittance in a few seconds.

Gyeonggi-do, Korea--A new type of smart window based on so-called "counterions" switches from 0% to 90.9% optical transmittance in a few seconds.1 The technology promises low cost and nontoxic manufacture, but has stiff competition from established smart-window technologies such as SmartGlass by Research Frontiers (Woodbury, NY). Smart windows can control light passing into a building or vehicle, making window-gazing more comfortable and, in some cases, saving energy.

Dip and dip again

Developed by researchers at the Korea Electronics Technology Institute, the new window is fabricated by spray-casting a kind of polymer called poly[2-(methacryloyloxy)ethyltrimethylammonium chloride-co-3-(trimethoxysilyl)propyl methacrylate] on glass. If the glass is dipped in a solution containing thiocyanate (SCN-) ions, it quickly becomes transparent; dipping the glass in a solution with bis(trifluoromethane)sulfonimide (TFSI-) ions quickly turns the coating opaque by forming microporous scattering structures. The cycle can be repeated many times. (By the way, the term "counterion" might be easier for some people to understand if it were spelled "counter-ion.")

Smart windows that block sunlight from entering buildings in summer and switch back to full transparency in winter already are available; however, some of the technologies have drawbacks such as high cost, rapid deterioration in performance, and manufacturing processes that involve potentially toxic substances, which the new window doesn't have.

However, the researchers will have to work out a way to switch the windows that doesn't involve dipping them in different solutions.

REFERENCE:

1. Chang Hwan Lee et al., ACS Nano, 5 Aug. 2011, DOI: 10.1021/nn202328y.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!