Handheld lensless microscope identifies malaria parasites

Los Angeles, CA--In July 2010, Laser Focus World reported that a lensless microscope developed by researchers at the University of California, Los Angeles (UCLA) was being tested in Africa, and we reported again in April 2011 that lensless tomographic 3D imaging using the same technique was demonstrated. Now, the same lensless microscope technique has been used to identify malaria parasites.

The field-portable lensless optical microscope, which can image large sample areas with sub-micron resolution, is based on an imaging technique termed ‘partially-coherent digital in-line holography.’ The method light-emitting diodes (LEDs) and off-the-shelf digital image sensors with no need for lenses or other bulky optical components; the sensor is held in close proximity to the specimen. The process can even be used to image with a cell phone. UCLA uses a digital image processing technique called pixel super-resolution to convert multiple low-resolution microscope images to a single high-resolution one.


During operation, the light reaching the sensor is either scattered from the object or transmitted unaltered through the sample. The sensor records the intensity of the interference pattern between the scattered and undisturbed light, forming a hologram. The phase of the light field is lost because the sensor responds only to intensity, but iterative phase retrieval algorithms enable recovery of the phase. This allows the field to propagate back to the sample plane, which enables recovery of a microscopic image of the object in both the amplitude and phase channels.

The proximity of the sample to the sensor in this configuration allows the use of the entire FOV of the sensor as the microscope's FOV. This area can be orders of magnitude larger than that of a traditional microscope. With a useful magnification 10-40X, the UCLA approach is appropriate for imaging applications that require testing a large sample volume. In fact, the system was used to image red blood cells infected with malaria parasites. Note that a traditional microscope, due to its limited FOV, would require multiple scans to get a statistically significant number of cells to diagnose malaria.

SOURCE: SPIE; http://spie.org/x51571.xml?ArticleID=x51571


Posted by: Gail Overton 

Subscribe now to Laser Focus World magazine; It’s free! 

Follow us on Twitter

Follow OptoIQ on your iPhone. Download the free App here



50 YEARS OF SOLID-STATE LASERS


A long way from the ruby laser

Most Popular Articles

Webcasts

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS