Handheld lensless microscope identifies malaria parasites

Los Angeles, CA--In July 2010, Laser Focus World reported that a lensless microscope developed by researchers at the University of California, Los Angeles (UCLA) was being tested in Africa, and we reported again in April 2011 that lensless tomographic 3D imaging using the same technique was demonstrated. Now, the same lensless microscope technique has been used to identify malaria parasites.

The field-portable lensless optical microscope, which can image large sample areas with sub-micron resolution, is based on an imaging technique termed ‘partially-coherent digital in-line holography.’ The method light-emitting diodes (LEDs) and off-the-shelf digital image sensors with no need for lenses or other bulky optical components; the sensor is held in close proximity to the specimen. The process can even be used to image with a cell phone. UCLA uses a digital image processing technique called pixel super-resolution to convert multiple low-resolution microscope images to a single high-resolution one.

During operation, the light reaching the sensor is either scattered from the object or transmitted unaltered through the sample. The sensor records the intensity of the interference pattern between the scattered and undisturbed light, forming a hologram. The phase of the light field is lost because the sensor responds only to intensity, but iterative phase retrieval algorithms enable recovery of the phase. This allows the field to propagate back to the sample plane, which enables recovery of a microscopic image of the object in both the amplitude and phase channels.

The proximity of the sample to the sensor in this configuration allows the use of the entire FOV of the sensor as the microscope's FOV. This area can be orders of magnitude larger than that of a traditional microscope. With a useful magnification 10-40X, the UCLA approach is appropriate for imaging applications that require testing a large sample volume. In fact, the system was used to image red blood cells infected with malaria parasites. Note that a traditional microscope, due to its limited FOV, would require multiple scans to get a statistically significant number of cells to diagnose malaria.

SOURCE: SPIE; http://spie.org/x51571.xml?ArticleID=x51571

Posted by: Gail Overton 

Subscribe now to Laser Focus World magazine; It’s free! 

Follow us on Twitter

Follow OptoIQ on your iPhone. Download the free App here

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles


Lens Design – Tools for designing manufacturable aspheres for complex optical assemblies

Designing aspheres that may be successfully fabricated and tested can be a frustrating experience. The range of possible aspheres is much larger than the ran...

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Running with Sharp Edges

A pulsed-current laser diode driver generates constant-current pulses for driving, testing, and c...

High-Power Diode Lasers under External Optical Feedback

We carried out a comprehensive study on single emitters with different antireflection (AR) coatin...

DRS Technologies’ Patented Sensor Technology Revealed

Learn the truth about what’s behind DRS Technologies’ competitive advantage over thermal sensor m...
Technical Digests
There is no current content available.

Click here to have your products listed in the Laser Focus World Buyers Guide.


AFL Releases FlexTester OTDR and Loss Test Set with Link Map

12/19/2014 AFL released LinkMap™ with Pass/Fail option for its OFL280 and FLX380 FlexTester family of all-in...

New Optical Wavelength Meters

09/07/2011 –Bristol Instruments, Inc., founded by three former employees of Burleigh, has announced the intr...

Bristol Instruments Introduces Laser Spectrum Analyzer

09/07/2011 Bristol Instruments Introduces Laser Spectrum Analyzer for Infrared Lasers Complete wavelength an...
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS