Optical beamscanner reduces laser wobble

Optical scanners intended to modulate or deflect light are often galvanometer-based mechanical systems. At high materials-processing speeds, demands on the bearings for moving parts are exceptionally high, and cross-axes wobble (the vertical deviation of a scanned laser beam from its nominal linear axis) is typically on the order of 200 μrad. But a new silicon-based resonant microelectromechanical systems (MEMS) scanner from the Fraunhofer Institute for Photonic Microsystems (IPMS; Dresden, Germany) has demonstrated cross-axes wobble less than 35 μrad; the scanner oscillates at 23 kHz with a mechanical amplitude of ±9°.

Click to Enlarge

A typical Fraunhofer MEMS scanner chip (4.0 × 2.6 mm2) deflects a beam using an aluminum-coated (reflectivity greater than 86% between 450 to 650 nm), 1.2-mm-diameter, circular silicon MEMS mirror. With average power consumption lower than 300 µW, the scanner operates at laser powers up to 600 mW at 670 nm. Unlike galvanometer-based scanners, the design uses photolithographic methods to enable high symmetry and reduce unbalanced masses. And, compared to other MEMS designs, the actuation—based on interdigitated-comb structures—creates a very energy-efficient driving mechanism and minimizes process-related accidental asymmetry. More than 150 MEMS scanner designs can be accessed online using the Fraunhofer IPMS Scanner-Configurator. The customer simply inputs the desired scan frequency, maximum mechanical amplitude, mirror diameter, and maximum mechanical deformation that can be tolerated.

Contact André Dreyhaupt at andre.dreyhaupt@ipms.fraunhofer.de.

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Most Popular Articles

Webcasts

Handheld Spectrometers

Spectroscopy can be a powerful measurement tool, and handheld spectrometers offer the ultimate in portability, so the instrument can be applied wherever meas...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...
Technical Digests

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...
Sponsored by

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Laser Beamsteering Mirrors

First choice for all mirror applications: Optics Balzers designs and produces flat mirr...

Fluorescence Filter Sets

Optics Balzers fluorescence filter sets include excitation and emission filters (bandpa...

Westech Optical Mirrors

Westech provides stock and custom mirrors. Spherical and flat mirrors are the most popu...

RELATED COMPANIES

Technodiamant USA Inc

Manufactures quality diamond tools including "Controlled Waviness" tools for precision ...

CVI Laser Optics

Provides solutions for semiconductor, biotechnology, materials processing and basic res...

Cirrus Photonics LLC

Provides innovative light source and optical systems solutions to address demanding tec...
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS