Better path-optimization algorithm for WDM fiber-optic networks speeds up calculations by 10,000 times

June 28, 2011
For today's wavelength-division multiplexing (WDM) systems, calculating the best route and wavelength assignments for each signal path is a challenge.

Raleigh, NC--For today's wavelength-division multiplexing (WDM) systems, calculating the best route and wavelength assignments for each signal path is a challenge. Not only are WDM SONET (synchronous optical network) rings becoming more complicated, but a single optical fiber can support 100 or more wavelengths; in addition, the difficulty of the path-assignment calculations grows exponentially with the network size. Researchers at North Carolina State University have developed a more efficient algorithm that should speed up the path-calculating process by 10,000 times.1

Using existing techniques, finding the optimal solution for a SONET ring network can take days, even for smaller rings. And a ring's connections are modified on an ongoing basis, to respond to changing use patterns and constantly increasing traffic demands.

In contrast, the new model identifies the exact optimal routes and wavelengths for ring network designers, creating a large graph of all the paths in a ring and where those paths overlap. The model then breaks that graph into smaller units, with each unit consisting of the paths in a ring that do not overlap. Because these paths do not overlap, they can use the same wavelengths. (Naturally, paths that do overlap cannot use the same wavelengths.)

"Problems that used to take days to solve can now be solved in just a few seconds," says George Rouskas, one of the researchers. He notes that ring design work can also be done using fewer computer resources, lowering costs.

REFERENCE:

1. Emre Yetginer et al., Journal of Optical Communications and Networking, Vol. 3, No. 7, p. 577 (2011); doi:10.1364/JOCN.3.000577.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!