IN MY VIEW: Races for the rare earths

I was surprised to learn just how critical the so-called "rare earth elements" are in the development of complex electronics for the high-performance consumer and military/defense markets. While the recent developments have been occurring most strongly in the China R&D institutes, the US has begun to fail—and it may be too late to catch up. Once again, the US does the basic fundamental research and leaves it to others to succeed with the profitable applications of rare earths.

More precious than gold, more difficult to mine than diamonds, and more dangerous than nuclear wastes, the 17 rare earth elements are sometimes thought to be the "oil" of the 21st century. That appears to be the view of the Chinese government, which is moving rapidly to restrict the supply of the more valuable rare earths. Already the Chinese control more than 90% of the world's needs for rare earth elements. Not only are these elements finding extensive use in consumer electronics devices but they are also critical in advanced defense systems.

Rare earth elements are not scarce. In fact, they exist widely in iron-ore deposits scattered around the world. The catch is that the concentrations are very low, making extraction quite difficult and very costly. Typically, several rare earth elements will exist in open-cast mining for iron ore where separation may be difficult in any kind of a large-scale operation for a single rare earth element.

There are a number of small US companies involved in rare earth metals extraction, but these companies have a hard time competing with the Chinese. The US used to be a leader in the mining of such exotic elements as scandium, yttrium, lanthanum, and thulium, but the last working North American mine closed its operations in 2002, in the face of increasing environmental regulations and cheaper product from China. Recently, the miner's new owner, MolyCorp Minerals, filed a $500 million IPO in order to build new resources and reopen the mine. However, injection of funds may be a case of "too little and too late."

The major Japanese automobile manufacturers and electronics makers are already getting anxious about the supply of such rare earth metals as neodymium (used in laptop computers) and lanthanum (used in batteries for hybrid autos). While the use of neodymium (or the lack of it on the open markets) is not yet critical, a major new application (for example, control systems for electric cars) could produce a huge demand that only the Chinese could meet.

The worldwide demand for rare earth metals is projected to reach 180,000 tons in 2012, up markedly from 134,000 tons in 2009. China has reduced its exports from 50,000 tons annually to 30,000 tons, thus forcing some customers to deplete their stockpiles. Some industry observers see these stockpiles becoming fully depleted in a few years. However, it is likely that a tightening of the rare earths market will cause most US suppliers to stop building new processors and to quit the market.

Clearly, the US has to develop or subsidize rare earth developments to hold its own against its Chinese competitors. In my view, the Chinese are in the lead for raw materials refining, processing techniques, and applications. Given the current requirements for slashing defense budgets, I see little likelihood of significant US research and development happening any time soon. Within a decade, the US could be completely dependent on Chinese sources for rare earth metals for advanced electronics systems.

For an excellent review of China's grip on rare earth research and development and extraction, I recommend you read "China's Rare Earth Element Industry: What can the West learn?" by Cindy Hurst, an analyst for the US Army's Foreign Military Studies Office, Ft. Leavenworth, KS, published by the Institute for the Analysis of Global Security, a Washington, DC-based non-profit think-tank (

Can we afford to lag behind the Chinese in races for both R&D and manufacturing expertise for rare earths?

Click to EnlargeJeffrey Bairstow
Contributing Editor


More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Most Popular Articles


Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.


Phantom ir300

The Phantom ir300 provides extended spectral response beyond visible light spectrum up ...

Miro Airborne

Miro Airborne is a high-speed camera designed for airborne applications.

Phantom Miro Family

The Phantom Miro family are small, lightweight digital high-speed cameras.


Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field o...

Raw Communications

Provider of marketing services in the fiber optic data communications industry includin...

XiO Photonics B V

Offers strong competence in integrated optical products for visible light applications....
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS