IBM CMOS silicon nanophotonics technology aims at exascale computing

Dec. 3, 2010
Yorktown Heights, NY--IBM unveiled a new technology called CMOS Integrated Silicon Nanophotonics that enables computer chips to communicate using pulses of light.

Yorktown Heights, NY--IBM (NYSE: IBM) scientists unveiled a new chip technology that integrates electrical and optical devices on the same piece of silicon, enabling computer chips to communicate using pulses of light (instead of electrical signals). The new technology, called CMOS Integrated Silicon Nanophotonics, is the result of a decade of development at IBM's global Research laboratories. Other silicon photonics technologies are being developed at Intel, Sun Labs, and by European researchers, among many others.

IBM anticipates that Silicon Nanophotonics will dramatically increase the speed and performance between chips, and further the company's ambitious Exascale computing program, which is aimed at developing a supercomputer that can perform one million trillion calculations--or an Exaflop--in a single second. An Exascale supercomputer will be approximately one thousand times faster than the fastest machine today.

"The development of the Silicon Nanophotonics technology brings the vision of on-chip optical interconnections much closer to reality," said T.C. Chen, VP, Science and Technology, IBM Research. "With optical communications embedded into the processor chips, the prospect of building power-efficient computer systems with performance at the Exaflop level is one step closer to reality."

In addition to combining electrical and optical devices on a single chip, the new IBM technology can be produced on the front-end of a standard CMOS manufacturing line and requires no new or special tooling. With this approach, silicon transistors can share the same silicon layer with silicon nanophotonics devices. To make this approach possible, IBM researchers have developed a suite of integrated ultra-compact active and passive silicon nanophotonics devices that are all scaled down to the diffraction limit--the smallest size that dielectric optics can afford.

By adding just a few more processing modules to a standard CMOS fabrication flow, the technology enables a variety of silicon nanophotonics components, such as: modulators, germanium photodetectors, and ultra-compact wavelength-division multiplexers to be integrated with high-performance analog and digital CMOS circuitry.

IBM says the density of optical and electrical integration demonstrated by its new technology is unprecedented--a single transceiver channel with all accompanying optical and electrical circuitry occupies only 0.5 square millimeters--10X smaller than previously announced by others. Additional information on the project can be found at www.research.ibm.com/photonics.

SOURCE: IBM Research; www-03.ibm.com/press/us/en/pressrelease/33115.wss

Posted by:Gail Overton

Subscribe now to Laser Focus World magazine; It’s free!

Follow us on Twitter

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!