SLAC X-rays see mutations that trigger calcium-related disease

Menlo Park, CA--Using intense X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy's SLAC National Accelerator Laboratory, researchers have determined the detailed structure of a key part of the ryanodine receptor, a protein associated with calcium-related disease. Their results, which combine data from SSRL and the Canadian Light Source, pinpoint the locations of more than 50 mutations that cluster in disease "hotspots" along the receptor. The protein understanding could play a role in developing therapies for such calcium-related problems as heart disease.

Calcium regulates many critical processes within the body, including muscle contraction, the heartbeat, and the release of hormones. But too much calcium can be a bad thing. In excess, it can lead to a host of diseases, such as severe muscle weakness, a fatal reaction to anesthesia, or sudden cardiac death.

"Until now, no one could tell where these disease mutations were located or what they were doing," said principal investigator Filip Van Petegem of the University of British Columbia in Vancouver. The ryanodine receptor controls the release of calcium ions from a storehouse within skeletal-muscle and heart-muscle cells as needed to perform critical functions. Previous studies at lower resolution indicated that mutations cluster in three regions along the receptor, but without more detailed information it remained unclear exactly how they contributed to disease.

In a study published this week in Nature, Van Petegem and his group describe the structure of one of these hotspots in extremely fine detail and predict how the mutations might cause the receptor to malfunction and release calcium too soon. "These mutations most likely cause the same disease effects, but a severe mutation leads to stronger symptoms, and doesn't require as big of a stimulus to induce disease," Van Petegem said.

A premature release of calcium produces extra electrical signals within the cells. In skeletal muscle, this can lead to fatal rises in body temperature under certain anesthetics, or the failure of major muscles. In cardiac muscle it can trigger an arrhythmia, resulting in sudden cardiac death. While it is difficult to determine the exact number of people with these mutations, it is estimated that as many as one in 10,000 may be at risk for disease.

"Thanks to the technological capabilities at SSRL, we were able to rapidly screen hundreds of crystallized samples of this receptor protein to find ones with the best quality, giving the best structure. This study is a good first step toward designing new molecules that could be used as a drug," Van Petegem said. "These mutations could be a very promising therapeutic target for treating heart disease."


SOURCE: SLAC; http://home.slac.stanford.edu/pressreleases/2010/20101104.htm

Posted by: Gail Overton

Subscribe now to Laser Focus World magazine; It’s free! 

Follow us on Twitter 



Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles

Webcasts

Understanding Polarization and Optical Coatings

Light is an electromagnetic wave, but, at optical frequencies, it is its electric field that interacts with materials, with the direction of the electric fie...

In-Situ Infrared Sensing using Calibration-Free Scanned-WMS Laser Absorption Spectroscopy

This presentation, sponsored by Wavelength Electronics and ILX Lightwave, will discuss the range of sensing capabilities offered by scanned-WMS in the near- ...

Mid-infrared lasers in remote chemical sensing – from stand-off detection to atmospheric sounding

In this webcast, Gerard Wysocki of MIRTHE will discuss the unique remote-sensing capabilities enabled by modern mid-infrared (mid-IR) lasers and novel spectr...

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

White Papers

Tamarisk® Custom Lens Calibration

Though the Tamarisk product line is optimally designed to suit a variety of end-uses, DRS has dev...

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests
There is no current content available.

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS