HZB researchers take detailed x-ray images of intact undyed cells

Nov. 22, 2010
Combining the use of x-rays with nanotomography has allowed researchers at Helmholtz-Zentrum Berlin (HZB) to image structures of the components of mammalian cells in three dimensions at a 30 nm resolution.

Berlin, Germany--Combining the use of x-rays with nanotomography has allowed researchers at Helmholtz-Zentrum Berlin (HZB) to image structures of the components of mammalian cells in three dimensions at a 30 nm resolution.1

The technique has a crucial advantage over the conventional transmission electron microscope (TEM) in that, for the first time, there is no need to chemically fix, stain, or cut cells to study them. Instead, whole living cells are fast-frozen and studied in their natural environment. The new method exploits the natural contrast between organic material and water to form an image of all cell structures, delivering an immediate 3D image.

With the high resolution achieved by their microscope, the researchers, in cooperation with colleagues of the National Cancer Institute in the USA, have reconstructed mouse adenocarcinoma cells in 3D, seeing features such as the double membrane of the cell nucleus, nuclear pores in the nuclear envelope, membrane channels in the nucleus, numerous invaginations of the inner mitochondrial membrane, and inclusions in cell organelles such as lysosomes. Such insights will be crucial for shedding light on inner-cellular processes: such as how viruses or nanoparticles penetrate into cells or into the nucleus.

The researchers achieved this high 3D resolution by illuminating the minute structures of a frozen-hydrated cell with partially coherent light generated by BESSY II, using a high-resolution condenser lens.

REFERENCE:

1. Gerd Schneider et al., Nature Methods, (DOI:10.1038/nmeth.1533).

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!