SmartFiber to develop fully embeddable integrated-photonic systems for intelligent composites

Oct. 22, 2010
SmartFiber will develop a smart miniaturized system for continuous health monitoring of composites that integrates optical-fiber sensor, nanophotonic chip, and low-power wireless technologies.

Leuven, Belgium--SmartFiber, a consortium led by Imec and including partners Ghent University (Ghent, Belgium), Airborne (The Hague, The Netherlands), FBGS Technologies (Jena, Germany), Xenics (Leuven), Fraunhofer (Munich, Germany), and Optocap (Livingston, Scotland), will develop a smart miniaturized system for continuous health monitoring of composites that integrates optical-fiber sensor, nanophotonic chip, and low-power wireless technologies. The idea is to create "intelligent" composites.

The embedded systems will monitor the structural health of composites used as structural parts in wind-turbine blades, satellites, airplanes, civil constructions, oil and gas wells, and boat hulls. The European FP7 funded project SmartFiber will demonstrate a smart system small enough (millimeter-scale) that it can be embedded in a fiber-reinforced polymer.

Automated surveillance
The system is based on silicon nanophotonics and springs from Imec's partnership with its associated laboratory Intec at Ghent University. The chip contains a fiber-interrogation scheme or spectral analyzer as a photonic integrated circuit (PIC) several hundred micrometers in size. This low-power PIC will be electrically connected via wireless communication and inductive power coupling, packaged in a millimeter-sized cage, and coupled to optical fiber Bragg grating (FBG) sensors made by FBGS Technologies.

The microsystems will enable automated surveillance of strain and other changes, and will have a long lifetime in harsh environments. One result should be higher safety at lower cost (due to automated instead of manual surveillance). For example, such a microsystem will enable a wind turbine to operate closer to its design limits, increasing wind-energy capture and thus electrical energy output. It will also provide a continuous record of structural data that will inform decisions on maintenance, warning of potentially catastrophic mechanical failures and eliminating costly periodic checks.

For more info, see www.smartfiber-fp7.eu.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!