Inorganic thin-film PV substrate and encapsulation market to reach $1.3 billion by 2015

Oct. 18, 2010
A new report says that, while glass will continue to dominate substrate and encapsulation materials used for inorganic thin-film photovoltaics (TFPVs), new materials such as metal foils, plastics, ceramics, and composites will grow rapidly in importance.

Glen Allen, VA--A report from industry-analyst firm NanoMarkets says that, while glass will continue to dominate substrate and encapsulation materials used for inorganic thin-film photovoltaics (TFPVs), new materials such as metal foils, plastics, ceramics, and composites will grow rapidly in importance. This is a result of the push to manufacture newer flexible PV materials using roll-to-roll processes, resulting in "intrinsically flexible products." The report covers TFPV materials such as thin-film silicon, cadmium telluride, and copper indium gallium (di)selenide (CIGS).

The TFPV substrate/encapsulation market is expected to reach $1.3 billion by 2015 and $1.8 billion by 2017. While some of the most-advanced encapsulation systems have proven difficult to develop and come with a high cost, there are some thin-film PV materials where these systems are beginning to make economic sense, most notably CIGS.

The report says that, despite their decline in overall market share, glassmakers can still expect opportunities to emerge for them. Thus, new flexible glasses can be used in the growing portion of the TFPV market that uses roll-to-roll processes. In addition, the report suggests that glass will continue to dominate for the highest-performing, "utility-grade" TFPV panels for both encapsulation and substrate purposes.

That said, NanoMarkets believes that the TFPV market is seeking new materials, such as low-cost thermally resistant plastics, and lower-cost dyadic (dual-material) encapsulation systems. It claims that these new materials ultimately have opportunities that go well beyond the PV space--for example in flexible displays and flexible lighting.

For more info, see www.nanomarkets.net.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!