Exoplanet hunters develop apodizing phase-plate coronagraph


FIGURE. The planet Beta Pictoris b is imaged using the APP coronagraph. The "bad" (bright) side of the image is visible to the right while the central star Beta Pictoris has been masked out to reveal the planet to the left of the star.


Tucson, AZ--Using an apodizing phase-plate (APP) coronagraph developed at the University of Arizona's (UA's) Steward Observatory, astronomers have obtained images of a planet in a much closer orbit around its parent star than any other extrasolar planet previously found.

Installed on the European Southern Observatory's Very Large Telescope (VLT; Paranal Mountain, Chile), the coronograph allowed the scientists to confirm the existence and orbital movement of Beta Pictoris b, a planet about seven to ten times the mass of Jupiter, around its parent star Beta Pictoris, 63 light years away (see figure). The APP has an intricate phase pattern etched into it, which has the effect of blocking out the central starlight in a very defined way, allowing exoplanets to show up in the image.

"Until now, we only were able to look at the outer planets in a solar system, in the range of Neptune's orbit and beyond. Now we can see planets on orbits much closer to their parent star," says Phil Hinz, director of the UA's Center for Astronomical Adaptive Optics at Steward Observatory.

Where the planets are
Neptune's mean distance from the sun is about 2.8 billion miles, or 30 astronomical units (AUs). One AU is the mean distance between the sun and the Earth. The newly imaged planet, Beta Pictoris b, orbits its star at about seven AUs, a distance where things get especially interesting, according to Hinz, "because that's where we believe the bulk of the planetary mass to be in most solar systems--between five and 10 AUs."

According to Hinz, the growing number of extrasolar planets discovered to date by directly observing them--mostly supermassive gas giants in very large orbits--represents a biased sample because their size and distance to their parent star makes them easier to detect. "The technique we developed allows us to search for lower-mass gas giants about the size of Jupiter, which are more representative of what is out there," he says. "For the first time, we can search around bright nearby stars such as Alpha Centauri to see if they have gas giants."

No aiming needed
Johanan Codona, a senior research scientist at the UA's Steward Observatory who developed the theory behind the technique, which he calls phase-apodization coronagraphy, used his own unconventional mathematical approach to model the phase plate. To block out glare from a star, conventional coronagraphs have to be precisely lined up and are highly susceptible to disturbance. The APP, on the other hand, requires no aiming and works equally well on any stars or locations in the image.

The discovery is a result of an international collaboration among the Steward Observatory, the Swiss Federal Institute of Technology Zurich, the European Southern Observatory, Leiden University in the Netherlands, and Germany's Max-Planck-Institute for Astronomy.


1. Sascha P. Quanz et al., Astrophysical Journal Letters, Vol. 722, No. 1, 10 Oct. 2010.



Posted by John Wallace

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!




A long way from the ruby laser

Most Popular Articles


Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS