Laser welding boosts efficiency of TiO2 solar cells

Seoul, Korea--A group at Yonsei University has determined that laser welding of dye-sensitized solar cell (DSSC) interfaces improves the cells' efficiency by up to 65%.1

Dye-sensitized solar cells with titanium dioxide (TiO2) nanostructures have excellent charge-collection capabilities, high open-circuit voltages, and good fill-factors. However, they do not absorb all visible and near-IR photons and consequently have lower short-circuit photocurrent densities than conventional inorganic photovoltaics. Increasing the short-circuit current density of DSSCs is a key factor in improving the optical-to-electrical efficiency of these devices.

Options include the development of new dyes that absorb photons from a wider solar spectral range, and tailoring the TiO2 nanostructures to offer more efficient charge transport. A number of different schemes regarding these two factors have been suggested and shown to enhance the efficiency. Nevertheless, DSSC efficiencies are still low compared with inorganic devices. One of the main reasons is that the developed methods can be difficult to combine with other schemes to cumulatively improve the efficiency of the device.

Simple, fast, and additive
Researchers from the Department of Materials Science and Engineering at Yonsei University have demonstrated that the inter-electrode contact resistance arising from poor interfacial adhesion is responsible for a considerable portion of the total resistance in the DSSC. The group has shown that the current flow can be greatly improved by welding the interface with a laser.

Titanium dioxide films formed on transparent conducting oxide (TCO)-coated glass substrates are irradiated with a pulsed UV laser beam at 355 nm, which transmits through TCO and glass, but is strongly absorbed by TiO2. It was found that a thin continuous TiO2 layer is formed at the interface as a result of the local melting of TiO2 nanoparticles. This layer completely bridges the gap between the two electrodes and improves current flow by reducing the contact resistance.

Using the process, the team could improve the efficiency of devices by 35% to 65%. For example, DSSC cells fabricated with and without the interface welding exhibited efficiencies of 11.2% and 8.2%, respectively. The laser-welding technique is simple, fast and, more importantly, additive to any other efficiency-enhancing schemes.


REFERENCE:

1. Jinsoo Kim et al., 2010 Nanotechnology 21 345203; doi: 10.1088/0957-4484/21/34/345203

 

 

Posted by John Wallace

Follow us on Twitter

Subscribe now to Laser Focus World magazine; It’s free!

 

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles

Webcasts

Understanding Polarization and Optical Coatings

Light is an electromagnetic wave, but, at optical frequencies, it is its electric field that interacts with materials, with the direction of the electric fie...

In-Situ Infrared Sensing using Calibration-Free Scanned-WMS Laser Absorption Spectroscopy

This presentation will discuss the range of sensing capabilities offered by scanned-WMS in the near- and mid-infrared and provide several examples of impleme...

Mid-infrared lasers in remote chemical sensing – from stand-off detection to atmospheric sounding

In this webcast, Gerard Wysocki of MIRTHE will discuss the unique remote-sensing capabilities enabled by modern mid-infrared (mid-IR) lasers and novel spectr...

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

White Papers

Tamarisk® Custom Lens Calibration

Though the Tamarisk product line is optimally designed to suit a variety of end-uses, DRS has dev...

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests

Fiber for Fiber Lasers

The development of higher-power and higher-energy fiber lasers has benefited from many advances i...

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS