Intel creates first end-to-end silicon-photonics connection with integrated lasers

Santa Clara, CA--Intel Corporation announced that it has developed a research prototype that is the world's first silicon-based optical data connection with integrated lasers. The link can move data over longer distances and many times faster than today's copper technology; up to 50 gigabits per second (Gbps), says Intel.

Future data centers or supercomputers may see components spread throughout a building or even an entire campus communicating with each other by optical fiber, as opposed to being confined by heavy copper cables with limited capacity and reach. This will allow data-center users, such as a search-engine company, cloud-computing provider, or financial data center to increase performance and capabilities while saving significant costs in space and energy, or help scientists build more powerful supercomputers.

Concept vehicle
Justin Rattner, Intel chief technology officer and director of Intel Labs, demonstrated the silicon-photonics link at the Integrated Photonics Research conference (Monterey, CA). The 50 Gbps link is akin to a "concept vehicle" that allows Intel researchers to test new ideas and continue the company's quest to develop technologies that transmit data over optical fibers, using light beams from low-cost silicon rather than costly and hard to make devices using III-V semiconductors such as gallium arsenide. While telecommunications and other applications already use lasers to transmit information, current technologies are too expensive and bulky to be used for PC applications.

The 50 Gbps prototype is the result of a multiyear silicon-photonics research agenda, which included numerous "world firsts." It is composed of a silicon transmitter (with hybrid lasers in which indium phosphide is bonded to silicon; the silicon becomes part of the optical cavity) and a receiver chip, each integrating all the necessary building blocks from previous Intel breakthroughs including the first Hybrid Silicon Laser, co-developed with the University of California at Santa Barbara in 2006, as well as high-speed optical modulators and photodetectors announced in 2007.

The transmitter chip is composed of four lasers, each with an optical modulator that encodes data at 12.5 Gbps. The four beams are then combined and output to a single optical fiber for a total data rate of 50 Gbps. At the other end of the link, the receiver chip separates the four optical beams and directs them into photodetectors. Both chips are assembled using low-cost manufacturing techniques familiar to those used in the semiconductor industry. Intel researchers are already working to increase the data rate by scaling the modulator speed as well as increasing the number of lasers per chip, providing a path to future terabit/s optical links.

Separate from Light Peak
This research is separate from Intel's Light Peak technology, though both are components of Intel's overall I/O strategy. Light Peak is an effort to bring a multi-protocol 10 Gbps optical connection to Intel client platforms for nearer-term applications. Silicon-photonics research aims to use silicon integration to bring dramatic cost reductions, reach terascale data rates, and bring optical communications to an broader set of high-volume applications.

 

--posted by John Wallace

Laser Focus World

 

Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS