New way to produce diamond-turned mirrors situates them early on


Jena, Germany--Researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering (IOF) have worked out a way to produce diamond-turned telescope mirrors to what they say is a better surface figure and mirror-to-mirror positional accuracy. Mirrors have been built for an IR sounder telescope (IRS-TEL) using the technique. (The photo shows the telescope's M2/M3 assembly with two exactly aligned aspherical mirrors produced using the technique.)

Optics for certain space-research, climate-observation, and weather-forecasting satellites consist of several aspherically shaped mirror elements that form a telescope. "All the mirrors must be produced and characterized with extreme precision, that is to an accuracy of less than one micrometer," explains Sebastian Scheiding of the IOF. "They also have to be exactly positioned in relation to each other."

Until now this positioning has been very time-consuming, as it takes place step by step. First, the individual mirrors are fitted in the telescope one after the other, then the imaging quality is measured. If errors are found, they are corrected by positional adjustments to the mirrors. Then further measurements and adjustments are made until all components are optimally arranged.

Optics positioned together during diamond-turning
"We wanted to simplify this complicated and time-consuming adjustment process," says Scheiding. In the research project, which was initiated by the German Aerospace Center (DLR), Scheiding developed an new production technique which takes into account the later alignment of the components right from the outset. For this purpose, the individual mirror surfaces are positioned in relation to each other as precisely during processing as they will be later in the telescope. This reduces to a minimum the errors and corrections made when the mirrors are being fitted. The assembly process is simple and reproducible.

"The trick is that we mount all the mirrors for a module in the same machine at the same time and assign them to a common system of coordinates. To this end, each mirror blank is provided with defined, ultraprecise measurement marks and reference surfaces," says Scheiding.

The fixed marks define the coordinate system for diamond-turning of the mirror shapes. At the same time, however, they fix the position of each mirror in relation to the adjacent mirrors. Finally they also serve as reference points for subsequent measurement processes to check the quality of the optical system.

The mirror arrangement for the IRS-TEL contains two mirror modules, each of which has two juxtaposed aluminum mirror surfaces. The shape of the metal mirror deviates a maximum of 126 nm from the ideal aspherical shape and the position of two mirrors in relation to each other is said to be ten times more precise than for comparable conventionally produced mirror assemblies.

Less expensive too, says IOF
"As a result, we can make optical systems of this type to a far greater degree of accuracy, but at the same time we're cheaper because the time-consuming adjustment process during final assembly is no longer required," says Scheiding.

The IOF's mirror module is on display at Hall 3, Stand D50 at the OPTATEC international optical trade show from June 15 to 18 (Frankfurt, Germany).


 --posted by John Wallace

Laser Focus World


Most Popular Articles


Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in Raman spectroscopy for molecular and nanoparticle research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.


Laser Beamsteering Mirrors

First choice for all mirror applications: Optics Balzers designs and produces flat mirr...

Fluorescence Filter Sets

Optics Balzers fluorescence filter sets include excitation and emission filters (bandpa...

Westech Optical Mirrors

Westech provides stock and custom mirrors. Spherical and flat mirrors are the most popu...


Technodiamant USA Inc

Manufactures quality diamond tools including "Controlled Waviness" tools for precision ...

CVI Laser Optics

Provides solutions for semiconductor, biotechnology, materials processing and basic res...

Cirrus Photonics LLC

Provides innovative light source and optical systems solutions to address demanding tec...

Social Activity

Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS