Raman spectroscopy and LIBS used simultaneously for standoff analysis of explosives

March 2, 2010
Malaga, Spain--Spanish scientists used Andor Shamrock spectrometers and CCDs for the simultaneous use of Raman spectroscopy and LIBS for instant standoff analysis of explosives.

Malaga, Spain--Spanish scientists have used both Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) simultaneously for the instant, remote standoff analysis of explosive materials using a novel hybrid sensor system that relies on Shamrock spectrometers and high performance intensified CCD detectors supplied by Andor Technology (Belfast, Northern Ireland).

Since the new system allows complementary molecular identification and molecular abundance information to be gathered from two different sensing techniques, it represents a far more powerful analytical tool for the standoff detection of explosives present in trace quantities.

One completely field-tested, mobile hybrid sensor system based on this hyphenated spectroscopy approach, could potentially be safely used in the standoff detection of explosives residues left, for example, by human fingerprints on surfaces such as car door handles from distances up to 50 m. It could also be used to check for explosives hidden within parked vehicles by taking measurements through windscreens and windows.

The new hybrid detection system was developed at the University of Malaga (Malaga, Spain) by a team led by Professor José Javier Laserna. By integrating two Andor Shamrock SR303i spectrometers and iStar intensified CCDs, a Cassegrain telescope and a frequency doubled 532 nm Nd:YAG nanosecond laser pulses, his team was able to make simultaneous acquisitions from the same sample of Raman (molecular information) and LIBS spectra (multi-elemental information) for 4-mononitrotoluene (MNT), 2,6-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), C4 and H15 (both plastic explosives containing 90% and 75% of RDX by weight, respectively), and Goma2-ECO (Spanish denominated dynamite class high explosive).

According to Professor Laserna, "The Andor iStar iCCD detectors played a vital role in allowing us to develop this new mobile standoff detection system since their sensitivity allowed us to work with exceedingly low light levels. Furthermore, their refresh rates meant we could analyze spectral information at rates in excess of 10Hz and, therefore, perform simultaneous Raman and LIBS spectroscopy in real time. Our next development stage includes the integration of chemometric tools and data fusion strategies to further enhance the systematic analysis capabilities of this hyphenated mobile sensing system."

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Automation Technologies to Scale PIC Testing from Lab to Fab

March 28, 2024
This webinar will cover the basics of precision motion systems for PIC testing and discuss the ways motion solutions can be specifically designed to address the production-scale...

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!