Ultrashort laser pulses selectively kill viruses

While UV light can reduce the spread of tuberculosis, UV radiation unfortunately targets both nucleic acids and proteins, killing both the viral particles and healthy mammalian cells. But researchers at Arizona State University (Tempe, AZ), Washington University School of Medicine (St. Louis, MO), and Johns Hopkins (Baltimore, MD) have discovered that another photonic approach—a near-IR ultrashort pulsed, subpicosecond fiber laser—can be used to selectively kill viruses.

By using an appropriate laser power density, the near-IR fiber laser targets only the weak links on the protein shells of viral particles. The ultrashort pulse excites the vibrational modes on the protective shells to high energy states, breaking off the weak links on the shell through impulsive stimulated Raman scattering. Once these protein shells are damaged, the viral particles are inactivated, leaving sensitive particles like human Jurkat T cells, human red blood cells, and mouse dendritic cells unharmed. A 776 nm fiber laser with a laser power density of 1 GW/cm2 is powerful enough to inactivate a virus, while 10 GW/cm2 can kill mammalian cells, meaning that the right laser power density is critical for successful viral inactivation without harming desirable cells. The method is now being studied for clinical treatment of blood-borne diseases like HIV and for disinfecting viral pathogens in blood products. Contact Kong-Thon Tsen at tsen@asu.edu.

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Most Popular Articles

Webcasts

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Introduction to scientific InGaAs FPA cameras

Working in the near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum offers r...

Understanding Optical Filters

Optical Filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS