Boeing's advanced tactical laser "defeats" ground target in flight test

September 2, 2009--The Boeing Company (Albuquerque, NM) and the U.S. Air Force on Aug. 30 "defeated" a ground target from the air with the Advanced Tactical Laser (ATL) aircraft, demonstrating ATL's first air-to-ground, high-power laser engagement of a tactically representative target. (Note: the ATL is different from the megawatt-class Airborne Laser, which is a different project led by Boeing and the U.S Missile Defense Agency and which is mounted in a modified Boeing 747 aircraft.)

During the test, the C-130H aircraft took off from Kirtland Air Force Base (also in Albuquerque) and fired its high-power chemical oxygen-iodine laser (COIL) laser through its beam-control system while flying over White Sands Missile Range (the actual optical output of the ATL is classified). The beam-control system acquired the ground target--an unoccupied stationary vehicle--and guided the laser beam to the target, as directed by ATL's battle-management system. The laser beam's energy "defeated" the vehicle (which presumably means damaging the vehicle beyond repair), according to Boeing.

"This milestone demonstrates that directed-energy weapon systems will transform the battlespace and save lives by giving warfighters a speed-of-light, ultraprecision engagement capability that will dramatically reduce collateral damage," said Greg Hyslop, vice president and general manager of Boeing Missile Defense Systems.

The test occurred less than three months after a June 13 test in which ATL successfully fired its laser from the air for the first time, hitting a target board on the ground. The ATL team plans additional tests to further demonstrate the system's military utility. These demonstrations support the development of systems that will conduct missions on the battlefield and in urban operations.

"The bottom line is that ATL works, and works very well," said Gary Fitzmire, vice president and program director of Boeing Missile Defense Systems' Directed Energy Systems unit. "ATL's components--the high-energy chemical laser, beam-control system, and battle manager--are performing as one integrated weapon system, delivering effective laser-beam energy to ground targets."

The ATL industry team also includes L-3 Communications/Brashear, which built the laser turret; HYTEC Inc., which made a variety of the weapon system's structural elements; and J.B. Henderson, which provides mechanical integration support.

.
.
.
.
.
--posted by John Wallace, johnw@pennwell.com

www.laserfocusworld.com
.
.
.
.
.



50 YEARS OF SOLID-STATE LASERS


A long way from the ruby laser

Most Popular Articles

Webcasts

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Fracking, climate change, and lasers:  new tools to reduce fugitive methane emissions

This webcast, sponsored by Hamamatsu Corporation, covers recent developments and field deployments of compact quantum-cascade-laser (QCL)-based methane senso...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Optical Isolators Improve Engraving Performance of Pulsed Fiber Lasers

The deleterious effects of back reflections on pulsed fiber lasers used in marking and engraving ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS