Boeing's advanced tactical laser "defeats" ground target in flight test

September 2, 2009--The Boeing Company (Albuquerque, NM) and the U.S. Air Force on Aug. 30 "defeated" a ground target from the air with the Advanced Tactical Laser (ATL) aircraft, demonstrating ATL's first air-to-ground, high-power laser engagement of a tactically representative target. (Note: the ATL is different from the megawatt-class Airborne Laser, which is a different project led by Boeing and the U.S Missile Defense Agency and which is mounted in a modified Boeing 747 aircraft.)

During the test, the C-130H aircraft took off from Kirtland Air Force Base (also in Albuquerque) and fired its high-power chemical oxygen-iodine laser (COIL) laser through its beam-control system while flying over White Sands Missile Range (the actual optical output of the ATL is classified). The beam-control system acquired the ground target--an unoccupied stationary vehicle--and guided the laser beam to the target, as directed by ATL's battle-management system. The laser beam's energy "defeated" the vehicle (which presumably means damaging the vehicle beyond repair), according to Boeing.

"This milestone demonstrates that directed-energy weapon systems will transform the battlespace and save lives by giving warfighters a speed-of-light, ultraprecision engagement capability that will dramatically reduce collateral damage," said Greg Hyslop, vice president and general manager of Boeing Missile Defense Systems.

The test occurred less than three months after a June 13 test in which ATL successfully fired its laser from the air for the first time, hitting a target board on the ground. The ATL team plans additional tests to further demonstrate the system's military utility. These demonstrations support the development of systems that will conduct missions on the battlefield and in urban operations.

"The bottom line is that ATL works, and works very well," said Gary Fitzmire, vice president and program director of Boeing Missile Defense Systems' Directed Energy Systems unit. "ATL's components--the high-energy chemical laser, beam-control system, and battle manager--are performing as one integrated weapon system, delivering effective laser-beam energy to ground targets."

The ATL industry team also includes L-3 Communications/Brashear, which built the laser turret; HYTEC Inc., which made a variety of the weapon system's structural elements; and J.B. Henderson, which provides mechanical integration support.

.
.
.
.
.
--posted by John Wallace, johnw@pennwell.com

www.laserfocusworld.com
.
.
.
.
.


Most Popular Articles

Webcasts

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Phantom ir300

The Phantom ir300 provides extended spectral response beyond visible light spectrum up ...

Miro Airborne

Miro Airborne is a high-speed camera designed for airborne applications.

Phantom Miro Family

The Phantom Miro family are small, lightweight digital high-speed cameras.

RELATED COMPANIES

Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field o...

Raw Communications

Provider of marketing services in the fiber optic data communications industry includin...

XiO Photonics B V

Offers strong competence in integrated optical products for visible light applications....

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS