Radio-over-fiber/WDM scheme uses all-optical upconversion

June 1, 2009
To allow optical fibers to transmit both telecom (1550 nm) wavelength-division-multiplexed (WDM) signals and millimeter-wave radio signals to serve broadband wireless communication systems, the WDM signals can be upconverted to the millimeter-wave region for simultaneous transmission with radio-over-fiber (ROF) signals.

To allow optical fibers to transmit both telecom (1550 nm) wavelength-division-multiplexed (WDM) signals and millimeter-wave radio signals to serve broadband wireless communication systems, the WDM signals can be upconverted to the millimeter-wave region for simultaneous transmission with radio-over-fiber (ROF) signals. This hybrid network is possible using external intensity, phase, or cross-absorption modulation techniques; however, all of these methods suffer high conversion loss and polarization sensitivity. But by exploiting four-wave mixing (FWM) in a nonlinear fiber medium, researchers at NEC Laboratories America (Princeton, NJ) and the Georgia Institute of Technology (Atlanta, GA) have succeeded in demonstrating a low-loss, all-optical, polarization-insensitive hybrid telecom/ROF network.

The process begins with two pump beams generated by a single laser source and locked in phase with each other. Through FWM in a nonlinear fiber medium between the WDM signal beam and the two pump beams, two new peaks (locked and with the same polarization) are generated. Each new peak is a copy of the original signal, which is realized by polarization-insensitive wavelength conversion, and there are two identical new peaks for each WDM channel. After removing the original signals with an optical filter (an optical interleaver is optimal), only the converted new peaks exist. When the new converted peaks are detected by a high-speed photodiode, they are beat together and generate upconverted 60 GHz millimeter electrical signals. Contact Jianjun Yu at [email protected].

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!