(VIDEO) Optronic Labs' spectral source unlocks bio-imaging application

March 20, 2009--The OL 490 Agile Light Source from Optronic Laboratories (Orlando, FL) is unlocking new applications that require a programmable, digital spectral source. The Laboratory of Biomedical Imaging at the University of Texas at Arlington is currently using the system as part of a hyperspectral imaging setup for animal studies during partial kidney removals to monitor the restricted blood supply in the kidney after arterial clamping.

The OL 490 uses high-resolution Digital Light Processor (DLP) technology from Texas Instruments to produce a programmable spectrum from a flexible liquid light guide over the 380-780 nm wavelength range with under 5 nm full-width half-maximum (FWHM) bandwidth peaks; it is also available in the near-infrared (NIR) wavelength range. A video explains the OL 490 in more detail:

The OL 490 greatly assists biomedical imaging applications like the one at the University of Texas at Arlington. When performing open or endoscopic surgery, it is often difficult to differentiate between neighboring tissues. For example, when removing the gallbladder, it is important not to damage the common bile duct. It is well-documented that oxygenated tissue reflects different wavelengths of light at different intensities than deoxygenated tissue. In the same way, gallbladder and bile duct tissue has a different spectral signature than surrounding anatomical structures such as the liver and blood vessels.

By using hyperspectral imaging, a series of images are captured while scanning through different wavelengths of light. This is where the OL 490 programmable spectral source comes in. Each processed image pixel corresponds to the spectrum for that point on the image. The spectrum is then compared to known spectral signatures to determine which tissue they match, or their level of oxygenation. In the case of the kidney blood supply studies, the pixel color illustrates the percentage of oxyhemoglobin in the blood. Red relates to high levels of oxyhemoglobin, while yellow, green, and blue represent decreasing levels of oxyhemoglobin, respectively.

For the complete story on the University of Texas at Arlington application, see Novel hyperspectral imager aids surgeons. A video is also available at www.youtube.com/watch?v=Bz46ynbLrx0.

With a high-speed USB interface and an external lamp port to support a variety of input configurations, the OL 490 has easy-to-use software that allows emulation of complex optical filter systems and rapid spectral rates up to 12.5 kHz with modulation rates to 6.25 kHz. Software slider controls allow real-time creation of your own spectra, allowing you to change properties of wavelength, bandwidth, and intensity of multiple spectral lines, or render spectral structures from imported files cloned from measured sources. External hardware triggers allow for automated, synchronized high-speed operation with other devices such as imaging instrumentation and test systems.

Other applications for the OL 490 programmable spectral source include microscopy, chemometrics, analysis of hazardous materials, forensics, and hyperspectral and bioscience imaging.

For more information, go to www.olinet.com.

--Posted by Gail Overton, gailo@pennwell.com; www.laserfocusworld.com.

Most Popular Articles


Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Introduction to scientific InGaAs FPA cameras

Working in the near infrared (NIR) and shortwave infrared (SWIR) regions of the spectrum offers r...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.


AFL Secures Patent for OTDR Technology

10/03/2013 AFL has been awarded a patent for “Optical Time Domain Reflectometer,” US Patent 8,411,259. The p...
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS