Putting solar cells in reverse highlights their defects

Researchers at the University of Leipzig (Leipzig, Germany) and Q-Cells (Bitterfeld-Wolfen, Germany) have come up with a new way to test multicrystalline solar cells to optoelectronically find their defective areas with unprecedented resolution. The method highlights defects particularly on the cell’s grain boundaries. One previously known way to test solar cells is to feed an external electrical current into the cell in the direction of the cell’s forward bias; the current causes the cell to produce IR light in the same way as an LED. Defective areas immediately show up as dark regions; these are the same regions that would not efficiently collect solar energy. However, this test is not very spatially accurate.

Click here to enlarge image

Instead, Dominik Lausch of the University of Leipzig fed current into solar cells in the opposite direction (the reverse-bias direction), getting a very different result. In this case, only the defects themselves emitted light, and did so very brightly indeed at the boundaries of the cell’s multicrystalline grains. This test is an important one, because when part of a solar cell is subjected to a shadow in operation (due to a falling leaf, for example), that portion of the cell switches from forward to reverse bias; localized defects in the cell can then cause a strong current to flow that could wreck the cell. Contact q-cells@q-cells.com.

Most Popular Articles

Webcasts

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Miniature Spectrometers for Narrowband Laser Characterization

In less than 60 years, lasers have transformed from the imagined “ray gun” of science fiction int...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS