Semiconductor lasers enable high-rate quality random-number generation

December 29, 2008--Random number sequences are vital to such applications as computer simulations, statistics, and cryptography--but current methods of producing them are challenged by increasingly demanding data-processing rates. Now a group of researchers in Japan seems to have discovered a way around this problem. They have found that the physical chaos present in semiconductor lasers--laser light produced using a semiconductor as the medium--can produce good-quality random number sequences at very high rates.

The scientists, from Takushoku University, Saitama University, and NTT Corporation, all in Japan, achieved random number rates of up to 1.7 gigabits per second ( Gbps ), which is about 10 times higher than the second-best rate, produced using a physical phenomenon. They report this result in the December issue of Nature Photonics.

Fields and applications that could benefit from their work are numerous, including computational models to solve problems in nuclear medicine, computer graphic design, and finance. Random numbers are also important to internet security.

Generating random numbers using physical sources -- which can be as simple as coin-flipping and tossing dice -- are preferred over other methods, such as computer generation, because they yield nearly ideal random numbers: those that are unpredictable, unreproducible, and statistically unbiased.

Laser can be excellent physical sources if they are chaotic, the work demonstrates. This is achieved, in this case, by reflecting part of the laser light back into the laser using an external reflector. This induces chaos, causing the light intensity to oscillate wildly. As a result, the light's electromagnetic signals are highly complex and cover a wide frequency range.

The researchers used a pair of semiconductor lasers in their experimental setup. Each laser is connected to a photodetector, a device that senses and measures light, and each photodetector is connected to an analog-to-digital converter ( ADC ), which samples the physical light signals and outputs digital numbers. In this case, the specific ADCs convert the signals into random binary numbers suitable for computing and other high-speed data manipulation.

The group achieved a bit rate of 1.7 Gbps, although future work may center on devising laser schemes that can achieving rates as high as 10 Gbps

For more information see the paper Fast physical random bit generation with chaotic semiconductor lasers in Nature Photonics.

Posted by Barbara G. Goode, barbarag@pennwell.com.

Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

RAMAN SPECTROSCOPY: The technical advances just keep coming

In Raman spectroscopy, light from a laser interacts with a test sample, undergoing a wavelength s...

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS