Optimized tungsten photonic-crystal emitters outdo blackbodies in IR bands

Researchers at Sandia National Laboratories and the University of New Mexico (both in Albuquerque, NM) have numerically optimized tungsten photonic-crystal (PC) thermal emitters for certain IR bands and simulated how they emit in comparison to an ideal blackbody emitters in the same bands. They found that the PC emitters emitted mostly in a narrow-angle forward-emission profile, and at an emitter efficiency more than twice that of the ideal blackbody emitters. When integrated across the desired wavelength band, the PC was from 65% to 75% more power efficient than the blackbody.

They chose a commonly tested PC design: a 3-D “Lincoln Log” structure of tungsten. After a so-called genetic optimization of an eight-layer PC based on rigorous coupled-wave analysis, the PC was analyzed assuming it received its heat conductively from an ideal blackbody source. Versions of the PC were optimized and analyzed for the 3 to 5, 5 to 7, 7 to 9, and 9 to 11 µm IR bands. The resulting PC emitters could greatly boost the efficiency of thermal photovoltaic cells for energy generation, and also provide a good way to test thermal sensors and seekers. Contact Ihab El-Kady at ielkady@sandia.gov.

Most Popular Articles

Webcasts

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...

Fiber Optic Sensors – Fundamentals, Principles and Applications

In this webcast, sponsored by Nufern, we focus on optical fiber sensing technology.  Fundamental concepts will be presented first, followed by the under...

Infinite Possibilities – Easily Combining Scanner and Servo Motion

High precision motion control applications such as laser micromachining, 2-photon polymerization, glass panel and film patterning, and additive manufacturing...

Solutions in Search of Problems: What Spectroscopy Can Do for You

Spectroscopy is so pervasive that most of us take it for granted. We use it for routine laboratory and test measurements without appreciating how those same ...

Technical Digests

HIGH-ENERGY LASER COATINGS: Eliminating laser damage proactively

High-power and high-energy thin-film antireflection coatings for laser optics require careful des...
Sponsored by

LIBS -- spectroscopy for remote identification of materials

Laser-induced-breakdown spectroscopy (LIBS) uses a pulsed laser to vaporize a small sample of a s...
Sponsored by

Laser Tools for Materials Processing

Laser materials processing requires not only the appropriate industrial laser system, but also a ...
Sponsored by

Click here to have your products listed in the Laser Focus World Buyers Guide.

RELATED PRODUCTS

Phantom ir300

The Phantom ir300 provides extended spectral response beyond visible light spectrum up ...

Miro Airborne

Miro Airborne is a high-speed camera designed for airborne applications.

Phantom Miro Family

The Phantom Miro family are small, lightweight digital high-speed cameras.

RELATED COMPANIES

Photonics Bretagne

Offers a cluster composed of research centers, schools and companies all in the field o...

Raw Communications

Provider of marketing services in the fiber optic data communications industry includin...

XiO Photonics B V

Offers strong competence in integrated optical products for visible light applications....

Social Activity

  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS