Optimized tungsten photonic-crystal emitters outdo blackbodies in IR bands

Researchers at Sandia National Laboratories and the University of New Mexico (both in Albuquerque, NM) have numerically optimized tungsten photonic-crystal (PC) thermal emitters for certain IR bands and simulated how they emit in comparison to an ideal blackbody emitters in the same bands. They found that the PC emitters emitted mostly in a narrow-angle forward-emission profile, and at an emitter efficiency more than twice that of the ideal blackbody emitters. When integrated across the desired wavelength band, the PC was from 65% to 75% more power efficient than the blackbody.

They chose a commonly tested PC design: a 3-D “Lincoln Log” structure of tungsten. After a so-called genetic optimization of an eight-layer PC based on rigorous coupled-wave analysis, the PC was analyzed assuming it received its heat conductively from an ideal blackbody source. Versions of the PC were optimized and analyzed for the 3 to 5, 5 to 7, 7 to 9, and 9 to 11 µm IR bands. The resulting PC emitters could greatly boost the efficiency of thermal photovoltaic cells for energy generation, and also provide a good way to test thermal sensors and seekers. Contact Ihab El-Kady at ielkady@sandia.gov.

Most Popular Articles


Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Miniature Spectrometers for Narrowband Laser Characterization

In less than 60 years, lasers have transformed from the imagined “ray gun” of science fiction int...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.


SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...
Social Activity
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS