First diamond laser built using Raman technique portends future high-power laser sources

Dec. 11, 2008
A team of physicists at Macquarie University (Sydney, Australia) has created "the first diamond laser using a technique based on the Raman effect." The achievement demonstrates an effective method for generating powerful laser beams, and shows that chemical vapor deposition (CVD) diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

A team of physicists at Macquarie University (Sydney, Australia) has created what it calls "the first diamond laser using a technique based on the Raman effect." The achievement has demonstrated a new, more effective method for generating a powerful beam, and has shown that chemical vapor deposition (CVD) diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

"This research could pave the way for new laser sources over a wide range of wavelengths and with very high power levels," said research leader Richard Mildren. "Using natural diamonds in this type of work is problematic -- the quality is not consistent and, as everybody knows, they're very expensive," he noted.

He explains that CVD diamond production has improved substantially in the past two to three years, and now, "a one centimetre-long crystal can be purchased for around $2000."

Mildren says, "The next step is to see how effectively CVD diamond lasers operate at even higher power levels. We'd also like to investigate the potential for diamond Raman lasers in the ultraviolet and long wave infrared regions where other materials can't operate."
Mildren said there is potential for diamond Raman lasers to be used in everything from terahertz threat detection such as body-scanning devices at airports; ultra high precision laser surgery; and defense applications including directed energy weapons.

For more information see Macquarie University's website.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!