First diamond laser built using Raman technique portends future high-power laser sources

December 11, 2008--A team of physicists at Macquarie University (Sydney, Australia) has created what it calls "the first diamond laser using a technique based on the Raman effect." The achievement has demonstrated a new, more effective method for generating a powerful beam, and has shown that chemical vapor deposition (CVD) diamonds are of adequate size and quality to enable exploration of a new class of laser devices.

"This research could pave the way for new laser sources over a wide range of wavelengths and with very high power levels," said research leader Richard Mildren. "Using natural diamonds in this type of work is problematic -- the quality is not consistent and, as everybody knows, they're very expensive," he noted.

He explains that CVD diamond production has improved substantially in the past two to three years, and now, "a one centimetre-long crystal can be purchased for around $2000."

Mildren says, "The next step is to see how effectively CVD diamond lasers operate at even higher power levels. We'd also like to investigate the potential for diamond Raman lasers in the ultraviolet and long wave infrared regions where other materials can't operate."
Mildren said there is potential for diamond Raman lasers to be used in everything from terahertz threat detection such as body-scanning devices at airports; ultra high precision laser surgery; and defense applications including directed energy weapons.

For more information see Macquarie University's website.

Posted by Barbara G. Goode, barbarag@pennwell.com.

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles

Webcasts

Understanding Polarization and Optical Coatings

Light is an electromagnetic wave, but, at optical frequencies, it is its electric field that interacts with materials, with the direction of the electric fie...

In-Situ Infrared Sensing using Calibration-Free Scanned-WMS Laser Absorption Spectroscopy

This presentation, sponsored by Wavelength Electronics and ILX Lightwave, will discuss the range of sensing capabilities offered by scanned-WMS in the near- ...

Mid-infrared lasers in remote chemical sensing – from stand-off detection to atmospheric sounding

In this webcast, Gerard Wysocki of MIRTHE will discuss the unique remote-sensing capabilities enabled by modern mid-infrared (mid-IR) lasers and novel spectr...

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

White Papers

Tamarisk® Custom Lens Calibration

Though the Tamarisk product line is optimally designed to suit a variety of end-uses, DRS has dev...

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests

Fiber for Fiber Lasers

The development of higher-power and higher-energy fiber lasers has benefited from many advances i...

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS