Attosecond laser pulses steer hydrogen molecules

November 17, 2008--Theoretical physicist Uwe Thumm and colleagues Feng He and Andreas Becker have found a way to control the motion of hydrogen molecules' electrons and nuclei.

Thumm is a professor of physics at Kansas State University (K-State; Manhattan, KS). Feng is a research associate at the K-State physics department, and Becker is a professor at the University of Colorado in Boulder. The colleagues were able to model the steering of electrons in a hydrogen molecule using attosecond laser pulses.

In a recent research paper, the three collaborators explained how the pulses can be used to direct the motion of an electron inside a hydrogen molecule, and they determined the measurable consequences of this control over the electron. The paper appears this month in Vol. 101 of Physical Review Letters.

Thumm and his colleagues developed a mathematical model to explain the nature of experiments that are currently being performed at various laboratories worldwide, including the J.R. Macdonald Laboratory at K-State. For the past few years, Thumm and his colleagues studied what happens with the hydrogen molecular ion when it interacts with short laser pulses. They used hydrogen because it's the simplest molecule, although they have now extended their research toward the imaging and control of the much faster moving electrons.

The hydrogen molecular ion has two protons and just one electron that "glues" them together. A few years ago, by performing computer simulations, they found that laser pulses can control the motion of the protons by setting them in motion or slowing them down.

The researchers use a first ultrafast laser to pump the molecule with infrared pulses. The protons vibrate and move apart slowly, but the electron still tries to hang on. The second part of their model uses the laser to probe the particles with a second delayed light pulse to see what happens when the electron fails to keep the protons glued together. The infrared laser pulses create an electric field that puts a force on the electron. Eventually, Thumm said, the electron has to choose which proton it will stick with.

Thumm and his colleagues were surprised to find that for certain laser pulses the electron can move in the opposite direction from what they anticipated. "Our naive expectation was that the electron would follow the laser electric force," Thumm said. "That's what other simulations predicted, and they agree with classical physics and common intuition."

For instance, if you're pulling on a shopping cart, the cart will move in the direction of the force--in this case, toward you. But at the quantum level, the rules are different.

The researchers found that sometimes the electron moves in the direction of the force, but sometimes not. Thumm, He, and Becker found that the electron picks the proton on the left or the one of the right depending on the intensity of the laser pulse. Knowing which intensity will make the electron move to the left or the right gives physicists the ability to steer the electrons by setting the laser pulse to a specific intensity.

Thumm said this finding is not only a contribution to basic physics research, but it also could help chemists better understand and possibly control chemical reactions.

"We would like to see a 'molecular movie' that shows the redistribution of electrons in time--within attoseconds--during a chemical reaction," he said. "It would promote our understanding of basic processes that eventually enable life: electrons bind atoms to simple molecules, such as the hydrogen molecule or water. Through many chemical reactions, these simple molecules react with each other and eventually form huge bio-molecules that make life, as we know it, possible."

One possible commercial application of the finding, Thumm said, could be helping companies become more efficient in producing a desired chemical compound while minimizing unwanted byproducts in the reaction.


RELATED ARTICLES:

Musical chords analyze hydrogen molecule's response to laser pulses

Most Popular Articles

Webcasts

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...

Opportunities in the Mid-IR

The technology for exploiting the mid-IR is developing rapidly:  it includes quantum-cascade lasers and other sources, spectroscopic instruments of many...
White Papers

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...

Miniature Spectrometers for Narrowband Laser Characterization

In less than 60 years, lasers have transformed from the imagined “ray gun” of science fiction int...

Improve Laser Diode Performance by Reducing Output Cable Inductance using Twisted Pair Cable

The intent of this article is to provide information regarding the performance of twisted pair ca...
Technical Digests

OPTICAL COATINGS: Evolving technology produces new benefits

The antireflection, high-reflection, and/or spectral characteristics provided by optical coatings...

REMOTE FIBER-OPTIC SENSING: Data in abundance from difficult environments

The use of optical fibers to measure strain, temperature, and other parameters at desired points ...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS