New interferometer measures extreme aspheres without using null optics

June 25, 2008
June 25, 2008--QED Technologies (Rochester, NY) has just released a new version of its interferometer that is capable of full-aperture measurement of aspheres with more than 200 waves (120 microns) of departure from the best-fit sphere, without the use of null lenses.

June 25, 2008--QED Technologies (Rochester, NY) has just released a new version of its interferometer that is capable of full-aperture measurement of aspheres with more than 200 waves (120 microns) of departure from the best-fit sphere, without the use of null lenses. The metrology product is based on the company's subaperture-stitching technology, and adds to its line of instruments termed SSI-A (Subaperture Stitching Interferometry for Aspheres).

Standard interferometers can handle only a few waves of aspheric departure. One longstanding technique to overcome this limitation has been to fabricate null lenses--special optics that introduce the approximate amount (but opposite sign) of aspheric departure. The null optics are added to the interferometric setup, making the wavefront approximately spherical and thus able to be measured by the interferometer. However, null optics are unique to only a specific optical element or system to be measured, and must be fabricated and aligned extremely precisely in order not to introduce so much wavefront error as to render any interferometric measurements useless.

In contrast, the SSI-A instrument measures a number of subaperture regions and "stitches" them together digitally, eliminating the need for null optics even for measuring extreme aspheres. The new SSI-A incorporates an enhanced stitching engine, says QED. In addition, the SSI-A is capable of taking full-aperture measurements of spheres and flat surfaces.

QED is also known for its MRF (Magnetorheological Finishing) optical-polishing process, which uses a magnetorheological fluid, actively computer-controlled by electromagnetic fields, for polishing. A magnetorheological fluid contains a suspension of extremely small magnetic particles; the application of a magnetic field changes the fluid's viscosity and thus, in the MRF process, the polishing force over that region. QED sells MRF systems designed for the optical-production environment. QED is owned by Cabot Microelectronics Corporation (Aurora, IL), which supplies chemical mechanical planarization (CMP) slurries used in semiconductor and data-storage manufacturing (a CMP slurry polishes both by mechanical abrasion and chemical corrosion).

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!