New CMOS architecture from OmniVision enables 0.9 micron pixels

June 2, 2008
June 3, 2008--CMOS image sensor manufacturer OmniVision (Sunnyvale, CA) launched a new CMOS architecture called OmniBSI that uses backside illumination (BSI) to offer improved image quality while extending its pixel roadmap down to 0.9 micron pixels, crucial to continued miniaturization of digital imaging technology. OmniVision developed OmniBSI architecture with the support of its long-time foundry and process technology partner, Taiwan Semiconductor Manufacturing Corporation (TSMC).

June 3, 2008--CMOS image sensor manufacturer OmniVision (Sunnyvale, CA) launched a new CMOS architecture called OmniBSI that uses backside illumination (BSI) to offer improved image quality while extending its pixel roadmap down to 0.9 micron pixels, crucial to continued miniaturization of digital imaging technology. OmniVision developed OmniBSI architecture with the support of its long-time foundry and process technology partner, Taiwan Semiconductor Manufacturing Corporation (TSMC).

BSI methodology involves turning the image sensor upside down so that it collects light through what was previously the backside of the sensor, the silicon substrate. This approach differs from conventional front side illumination (FSI) image sensors, where the amount of light reaching the photosensitive area is limited, in part, by the multiple metal and dielectric layers required to enable the sensor to convert photons into electrons. The FSI approach can block or deflect light from reaching the pixel, ultimately reducing the fill factor and causing additional problems, such as crosstalk, between pixels. BSI reverses the arrangement of layers so that the metal and dielectric layers reside below the sensor array, providing the most direct path for light to travel into the pixel. This novel approach optimizes light absorption, enabling OmniVision to build a 1.4 micron BSI pixel that surpasses all the performance metrics of 1.4 micron, and even most 1.75 micron, FSI pixels.

"Moving FSI pixel architectures down to 1.4 micron and below, under current design rules, poses some real challenges because metal lines and transistors are driving the aperture of the pixel close to the wavelength of light, its physical limit," said Howard Rhodes, VP of process engineering at OmniVision. "To overcome this with traditional FSI pixel technology would require a migration to 65 nm copper process technologies, which would significantly increase the complexity and cost of manufacturing. Because it allows for more than three layers of metal, BSI achieves significant manufacturing benefits without moving to smaller process nodes. This means routing can be simplified and die sizes can be smaller than in FSI sensors, without the need to move to smaller process nodes with all their associated complexities and additional costs."

OmniVision is currently demonstrating an 8 megapixel, OmniBSI CameraChip sensor, and expects to start sampling first products before the end of June.

For more information, visit www.ovt.com.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!