Nanoshells detect and destroy cancer cells with NIR light

April 18, 2005, Houston, TX--Researchers at Rice University have developed a new approach to fighting cancer, combining nanoscale particles and near-infrared imaging to detect and destroy cancerous cells. Their report appears in the April 13 issue of the American Chemical Society's journal Nano Letters.

Current molecular imaging approaches only detect the cancer but don't offer a method of treatment, according to the study's lead authors, Rebekah Drezek, Ph.D., and Jennifer West, Ph.D., both professors in the Department of Bioengineering at Rice.

"You can look for a molecular marker that may indicate a significant clinical problem, but you can't do anything about it [just through imaging]," says Drezek. "We don't want to simply find the cancerous cells. We would like to locate the cells, be able to make a rational choice about whether they need to be destroyed, and, if so, proceed immediately to treatment."

To this end, Drezek and West collaborated to develop a new imaging and treatment method based on metal "nanoshells" � tiny spheres of silica coated with a thin layer of gold. Nanoshells were invented by electrical engineer Naomi Halas, Ph.D., also of Rice University. Because these spheres are constructed on the nanometer scale, they exhibit unique size-dependent behavior, such as tunable optical properties. This allows researchers to design particles that scatter and absorb light at particular wavelengths.

The scattering of light provides the optical signal used to detect the cancer cells, which then "light up" when they come into contact with the nanoshells. In this study, the researchers designed the nanoshells to look for breast cancer biomarkers on the surface of the cancer cells. The technique can be readily extended to target other types of cancer or disease processes that have known surface markers.

The additional ability of the particles to absorb light is used to generate heat, which then destroys the cancer cells. "Nanoshells are very unique in that we can engineer the particles so that both the optical scattering and absorption peaks occur in the near-infrared (NIR) spectral region where light penetration through tissue is highest," Drezek says. The NIR absorption also makes destruction of the targeted cells less invasive for patients because it uses a light source from outside the body that passes harmlessly through normal tissue and only heats the tissue containing nanoshells.

The new approach has some significant advantages over other alternatives that are under development, according to Drezek. For instance, optical imaging is much faster and less expensive than other medical imaging techniques. Gold nanoparticles are also more biocompatible than other types of optically active nanoparticles, such as quantum dots.

Drezek and West have successfully tested the separate imaging and therapy aspects of the nanoshells in animals and are now evaluating the combined imaging/therapy nanoshells in a mouse tumor model, which they expect to complete within the next six months.

Get All the Laser Focus World News Delivered to Your Inbox

Subscribe to Laser Focus World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now

Most Popular Articles

Webcasts

In-Situ Infrared Sensing using Calibration-Free Scanned-WMS Laser Absorption Spectroscopy

This presentation will discuss the range of sensing capabilities offered by scanned-WMS in the near- and mid-infrared and provide several examples of impleme...

Mid-infrared lasers in remote chemical sensing – from stand-off detection to atmospheric sounding

In this webcast, Gerard Wysocki of MIRTHE will discuss the unique remote-sensing capabilities enabled by modern mid-infrared (mid-IR) lasers and novel spectr...

Femtosecond Lasers – Getting the Photons to the Work Area

Ultrashort-pulse lasers, both picosecond and femtosecond, are now available from a large number of manufacturers, with new players entering the field at a ra...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Tamarisk® Custom Lens Calibration

Though the Tamarisk product line is optimally designed to suit a variety of end-uses, DRS has dev...

NIST Traceable Spectral Responsivity Calibration of Photodiode Detectors

All Newport optical detectors are recommended for a 12 month recalibration interval. Newport main...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests

Fiber for Fiber Lasers

The development of higher-power and higher-energy fiber lasers has benefited from many advances i...

SCANNERS FOR MATERIALS PROCESSING: Serving demanding applications

Galvanometer-based scanners are an essential component in laser-based materials-processing system...

Click here to have your products listed in the Laser Focus World Buyers Guide.

PRESS RELEASES

SCHOTT and Applied Microarrays Establish Distribution Partnership for NEXTERION® Products

01/22/2013 SCHOTT and Applied Microarrays, Inc. have established a partnership for the distribution of SCHOT...

SCHOTT North America and Space Photonics, Inc. Sign Exclusive Licensing Agreement for Covert Communications Technology

01/22/2013 WASHINGTON, D.C.—October 18, 2012—Space Photonics Inc. and SCHOTT North America, Inc. today annou...
Social Activity
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS