Researchers use semiconductors to set speed limit on light

Sept. 29, 2004
Berkeley, CA, September 29, 2004--In a nod to scientific paradox, researchers at the University of California, Berkeley, have slowed light down in an effort to speed up network communication.

Berkeley, CA, September 29, 2004--In a nod to scientific paradox, researchers at the University of California, Berkeley, have slowed light down in an effort to speed up network communication.

They have shown for the first time that the group velocity of light - the speed at which a laser pulse travels along a light wave - can be slowed to about 6 miles per second in semiconductors. While that speed is not exactly the pace of a turtle, it is 31,000 times slower than the 186,000 miles (or 300 million meters) per second that light normally clocks while traveling through a vacuum.

"It's about twice as fast as an orbiting space shuttle," said Connie J. Chang-Hasnain, UC Berkeley professor of electrical engineering and computer science and principal investigator of the project. "This achievement marks a major milestone on the road to ever faster optical networks and higher performance communications."

The researchers envision a future of 3-D graphics transmission, high-resolution video conferencing as good as face-to-face encounters and quantum memory chips that could boost the power of supercomputers, including those used for complex climate modeling.

Chang-Hasnain and other researchers at UC Berkeley's Department of Electrical Engineering and Computer Sciences describe their experiment in a paper published Oct. 1 in the journal Optics Letters. Co-authors of the paper include Hailin Wang at the University of Oregon (Eugene, OR) and Shun-Lien Chuang at the University of Illinois at Urbana-Champaign.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!