Bookham to Announce New Laser Processes at OFC

Ottawa, Canada, March 7, 2003, Bookham Technology will introduce at the Optical Fiber Communication Conference and Exposition (OFC) in March 2003 a novel in-situ etch and regrowth process for uncooled InP buried-heterostructure lasers that results in 50% lower rates of burn-in degradation than can be obtained by current standard processes.

The times-2 burn-in improvement is extremely promising for increasing the long-term reliability of the devices, which also exhibit 20% lower threshold currents. The new process is also compatible with the newer Aluminium Gallium Indium Arsenide (AlGaInAs) materials system and promises significant reliability gains for this developing technology.

Power-efficient uncooled directly modulated lasers with extended reach are an important class of communications laser for which buried heterostructures are essential, as these structures mitigate the effects of thermally induced chirp and power rollover that adversely impact laser performance. However, the process needed to fabricate buried heterostructures is crucial to device reliability.

The etching and regrowth required to make buried heterostructures can leave defects or introduce surface contamination on the mesa sidewalls. When the buried heterostructure is subsequently regrown on the material surface, any etch damage or impurities that remain at the surface can introduce a leakage current that increases the laser threshold current during device operation and degrades the laser's long-term reliability.

This effect is particularly severe for AlGaInAs, a new laser materials system of growing industry interest because of its performance characteristics and potential to operate at higher temperatures than standard InP. In principle, this would allow more compact devices to be fabricated as less passive cooling
is needed. Unfortunately, AlGaInAs oxidixes rapidly after etching, making the etched surfaces highly vulnerable to damage and contamination.

Bookham's unique in-situ etching process eliminates the problem of postetching surface damage or contamination by performing the etching step within the MOCVD reactor itself. Overgrowth is performed immediately on the clean freshly etched surface, thereby preventing the surface contaminations and oxidation that can occur in the standard process of using an external etcher to which the material has to be transferred at the risk of damage and contamination.

The paper details how InP 2.5Gbit/s directly modulated lasers have been grown and fabricated by the process, and also how two formulations of AlGaInAs buried heterostructures have been grown. The InP buried-heterostructure lasers consisted of an active layer with six compressively strained 6nm quantum wells in a separate confinement heterostructure, with a 1541nm target wavelength gain-coupled grating etched above the quantum-well stack. The final structures for both InP and AlGaInAs showed smooth planes and excellent surface morphology.

Laser Focus World



Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...

Accurate LED Source Modeling Using TracePro

Modern optical modeling programs allow product design engineers to create, analyze, and optimize ...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS