Hybrid polymer-silica waveguides provide tunability

Paula Noaker Powell

Air-silica microstructure fibers allow a diverse range of guided-mode properties to be created. The results can produce unique spectral characteristics when long and short-period gratings are written into photosensitive regions. In addition, it is possible to introduce polymers into the air regions to produce hybrid polymer-silica waveguides that allow enhanced tunability of propagation properties. One example recently investigated by Lucent Technologies Bell Labs (Murray Hill, NJ) and the Laboratory for Physical Sciences (College Park, MD) is a hybrid polymer-silica microstructure fiber with a UV-induced Bragg grating in the fiber core. A key feature-the large air regions of the fiber-reduces fiber fabrication constraints and simplifies the process of polymer infusion into the air regions.

Despite the lack of circular symmetry resulting from the microstructure, the polymer tuning observed is similar to that seen in standard fiber surrounded by polymers or oils. The polymer is contained only inside the air regions, so the outer air-silica interface is intact, allowing, for example, fabrication of on-fiber thin-film heaters for temperature tuning. According to the researchers involved in the project, the Bragg grating transmission spectrum clearly shows different design regimes in which cladding resonances can be wavelength-tuned, suppressed, or amplitude-tuned. This tunability is possible because of the strong temperature dependence of the polymer refractive index. For more information, contact Paul S. Westbrook at westbrook@lucent.com.

Most Popular Articles

50 YEARS OF GAS LASERS


Durable survivors evolve new forms

Webcasts

Laser Measurements Critical to Successful Additive Manufacturing Processes

Maximizing the stability of the variables going into any manufacturing process is what ensures ts consistency and high quality. Specifically, when a laser is...

Ray Optics Simulations with COMSOL Multiphysics

The Ray Optics Module can be used to simulate electromagnetic wave propagation when the wavelength is much smaller than the smallest geometric entity in the ...

Multichannel Spectroscopy: Technology and Applications

This webcast, sponsored by Hamamatsu, highlights some of the photonic technology used in spectroscopy, and the resulting applications.

Handheld Spectrometers

Spectroscopy is a powerful and versatile tool that traditionally often required a large and bulky instrument. The combination of compact optics and modern pa...
White Papers

All About Aspheric Lenses

The most notable benefit of aspheric lenses is their ability to correct for spherical aberration....

Wavelength stabilized multi-kW diode laser systems

Wavelength stabilization of high-power diode laser systems is an important means to increase the ...

Narrow-line fiber-coupled modules for DPAL pumping

A new series of fiber coupled diode laser modules optimized for DPAL pumping is presented, featur...
Technical Digests

ADHESIVES, SEALANTS, AND COATINGS: Solutions for optical technologies

A vast array of optical systems of various types and degrees of complexity require the use of adh...

WAVELENGTH-SWEPT LASERS: Dispersion-tuned fiber laser sweeps over a 140 nm range for OCT

By eliminating the use of mechanical tunable filters and instead tuning by intensity-modulation i...

Keeping pace with developments in photonic materials research

For demanding or custom spectroscopy solutions, care must be taken in selecting and integrating a...

HIGH-POWER FIBER LASERS: Working in the kilowatt regime

High-power materials-processing fiber lasers are available in an increasing variety of forms, as ...

Click here to have your products listed in the Laser Focus World Buyers Guide.
Social Activity
  •  
  •  
  •  
  •  
  •  
Copyright © 2007-2014. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS